top of page

Построим граф, вершинами которого являются города, а ребрами — существующие авиалинии. Вспомним признак делимости на 3: натуральное число делится нацело на 3 тогда и только тогда, когда сумма его цифр делится на 3. Заметим, что если название города делится на 3, то он соединен авиалиниями только с городами, названия которых тоже делятся на 3. Наоборот, те города, названия которых не делятся на 3, не могут быть соединены авиалиниями с городами, названия которых делятся на 3. Поэтому города 3, 6 и 9 образуют одну компненту связности графа, в которую никакие другие города не входят. Это означает, что из города 1 в город 9 добраться по воздуху нельзя

bottom of page